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Modeling Multiple Time Series With Applications 

G.C.TlAO and G.E. P. BOX* 

An approach to the modeling and analysis of multiple 
time series is proposed. Properties of a class of vector 
autoregressive moving average models are discussed. 
Modeling procedures consisting of tentative specifics-
tion, estimation, and diagnostic checking are outlined and 
illustrated by three real examples. 

KEY WORDS: Multiple time series; Vector autoregres- 
sive moving average models; Cross-correlations; Partial 
autoregression; Intervention analysis; Transfer function. 

1. INTRODUCTION 

Business, economic, engineering and environmental 
data are often collected in roughly equally spaced time 
intervals, for example, hour, week, month, or quarter. 
In many problems, such time series data may be available 
on several related variables of interest. Two of the rea- 
sons for analyzing and modeling such series jointly are 

1. To understand the dynamic relationships among 
them. They may be contemporaneously related, one se- 
ries may lead the others or there may be feedback 
relationships. 

2. To improve accuracy of forecasts. When there is 
information on one series contained in the historical data 
of another, better forecasts can result when the series are 
modeled jointly. 

Let 

{ Z } , .  . , { Z ,  t = 0, +1 ,  + 2 , .  . . (1.1) 

be k series taken in equally spaced time intervals. Writing 

Zt = (Zit,. . . ,Z/it) ' ,  (1.2) 

we shall refer to the k series as a k-dimensional vector 
of multiple time series. Models that are of possible use 
in representing such multiple time series, considerations 
of their properties, and methods for relating them to ac- 
tual data have been extensively discussed in the litera- 
ture. See in particular Quenouille (1957), Whittle (1963). 
Hannan (l970), Zellner and Palm (1974), Brillinger (1975), 
Dunsmuir and Hannan (1976). Box and Hauah (1977). 
Granger and Newbold (1977), Parzen (1977), wallis 
(1977), Chan and Wallis (1978), Deistler, Dunsmuir, and 
Hannan (1978), Hallin (1978), Jenkins (1979), Hsiao. 

* G.C. Tiao is Professor of Statistics and Business, and G.E.P. Box 
is Vilas Research Professor, Department of Statistics, University of 
Wisconsin, Madison, WI 53706. The authors are grateful to W.R. Bell, 
I. Chang, M.R. Grupe, G.B. Hudak, and R.S. Tsay for computing 
assistance. This research was partially supported by the U.S. Bureau 
of the Census under JSA 80-10. the Armv Research Office. Durham, 
NC under Grant No. D A A G ~ ~ - 7 8 - ~ 0 0 1 6 6 ,  and the Alcoa Foundation. 

(1979), Akaike (1980), Hannan (1980), Hannan, Duns- 
muir, and Deistler (1980), and Quinn (1980). There are, 
however, considerable divergences of view. The object 
of this article is to describe an approach to the modeling 
and analysis that we have developed over a considerable 
period of time and that we are finding effective. Our main 
emphasis will be on motivating, describing, and illus- 
trating the various methods used in an iterative model 
building process. Much, if not all, of the underlying the- 

ory can be found in the references given and, therefore, 
will not be repeated. Section 2 presents a short review 
of the widely used univariate (k = 1) time series and 
transfer function models as developed in Box and Jenkins 
(1970). Section 3 discusses a class of vector autoregres- 
sive moving average models. Model building procedures 
are discussed in Section 4 and applied to two actual ex- 
amples in Section 5. A comparison with some alternative 
approaches and some concluding remarks pertaining to 
the analysis of fitting results are given in Section 6. 

2. UNlVARlATE TIME SERIES AND TRANSFER 
FUNCTION MODELS 

When k = 1 we shall write Z, = Z, in (1.2). An im- 
portant class of models for discrete univariate series orig-. 
inally proposed by Yule (1927) and Slutsky (1937) and 
developed by such authors as Bartlett, Kendall, Walker, 
Wold, and Yaglom are stochastic difference equations of 
the form 

where +,(B) = 1 - +lB - ... - +,BP and O,(B) = 1 
- 0,B - ... - O,BY. In (2.1) the a,'; are indedendently 
identically and normally distributed random shocks (0-r 
white with zero mean and variance 0 2 ;  is the
back-shift operator such that BZ, = Z, - l ;  and z, = Z, 

- q is the deviation of the observation Z, from some 
convenient location q. 

Relationships between series izl,), . . . , {zkrlcan 
sometimes be represented by linear transfer function 
models of the form 

z h t  = C [ws,,i(B)Bb";18r,,i(B)1Zit 
i€k(h) (2.2) 

aht 1, 2, . . . + [flyl,(B)I~pl,(B)I ( h  = k) 

where z,, = 0, k(h) is the set ( I ,  . . . , h - 1); 
wS,,;(B), 6r,,;(B), cppl,(B), and flyl,(B) are pol~nomials in B; 
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the bl,i's are nonnegative integers; and {al,}, . . . , {akr} 
are k independent Gaussian white-noise processes with 
zero means and variances u12, . . . , uk2. In particular, 
intervention models of this form with one or more of the 
zh3s indicator variables have proved useful (Box and Tiao 
1975; Abraham 1980). 

Transfer function models of the form (2.2), however, 
assume that the series, when suitably arranged, possess 
a triangular relationship, implying for example that z1 
depends only on its own past; z2 depends on its own past 
and on the present and past of z ,  ; 23 on its own past and 
on the present and past of z2 and zl  ; and so on. On the 
other hand, if z l  depends on the past of z2 ,  and also z2 
depends on the past of z l ,  then we must have a model 
that allows for this feedback. 

3. 	MULTIPLE STOCHASTIC DIFFERENCE EQUATION 
MODELS 

3.1 The Vector ARMA Model 

A useful class of models obtained by direct generali- 
zation of the Yule-Slutsky ARMA models that allow for 
feedback relationships among the k series is obtained 
from (2.2) by letting k(h) be the set (1, . . . ,k) excluding 
h. These models can be alternatively expressed as the 
vector autoregressive moving average ARMA models 
(Quenouille 1957), 

where 

are matrix polynomials in B, the 9 ' s  and 0's are k x k 
matrices, z, = Z, - q is the vector of deviations from 
some origin q that is the mean if the series is stationary, 
and {a,) with a, = (a,,, . . . , ak,)' is a sequence of random 
shock vectors identically independently and normally 
distributed with zero mean and covariance matrix T .  We 
shall suppose that the zeros of the determinantal poly- 
nomials I Q,(B) I and I O,(B) I are on or outside the unit 
circle. The series z, will be stationary when the zeros of 
I Q,(B) I are all outside the unit circle, and will be inver- 
tible when those of I O,(B) I are all outside the unit circle. 
Properties of such models have been discussed by, for 
example, Hannan (1970), Anderson (197 l) ,  and Granger 
and Newbold (1977). 

Some Simple Examples. To illustrate the behavior of 
observations from these models, Figure 1 shows two se- 
ries with 250 observations generated from the bivariate 
(k = 2) first order moving average [MA(l)] model, z, 
= (I  - OB)a,, with 

Figure 2 shows two series with 150 observations gener- 
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Figure 1. Data Generated From a Bivariate MA(1) 
Model With Parameter Values in (3.2) 

F i r s t  S e r i e s  

'"'t 	 I I 

Second S e r i e s  

ated from the bivariate first order autoregressive [AR(l)] 
model, (I  - Q B ) ~ ,= a,, with 

While in both cases the series are seen to be stationary, 
observations from the autoregressive model are seen to 
have more "momentum" than those from the moving 
average model. 

In practice, time series often exhibit nonstationary be- 
havior. When several such series are considered jointly, 
nonstationarity may be modeled by allowing the zeros of 
I Q(B) I in (3.1) to lie on the unit circle. A particular ex- 
ample is the model (1 - B)z, = ( I  - OB)a,, that is, after 
differencing each series we obtain a vector MA(1) model. 
This is a vector analog of the commonly used univariate 
nonstationary model (1 - B)z, = (1 - 0B)a,. However, 
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Figure 2. Data Generated From a Bivariate AR(1) 
Model With Parameter Values in (3.3) 

First series 

I 4 . r  I 

N O  

Second Series 

it should be noted here that for vector time series, linear 
combinations of the elements of z, may often be station- 
ary, and simultaneous differencing of all series can lead 
to unnecessary complications in model fitting. See, for 
example, the discussion in Box and Tiao (1977) and Hill- 
mer and Tiao (1979). 

Tranfer Function Model. For the vector model in (3. l),  
in general, all elements of z, are related to all elements 
of ztPj ( j  = 1, 2, . . . ) and there can be feedback 
relationships between all the series. However, if the 2,'s 
can be arranged so that the coefficient matrices Q'S and 
0's are all lower triangular, then (3.1) can be written as 
a transfer function model of the form (2.2). More gen- 
erally, if the Q'S and 0's are all lower block triangular, 
then we obtain a generalization of the transfer function 
form of (2.2) in which both the input vector series and 
the output vector series are allowed to have feedback 
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relationships. Furthermore, relationships between the 
vector transfer function model and the econometric linear 
simultaneous equation model have been discussed in Zell- 
ner and Palm (1974) and Wallis (1977). 

3.2 	Cross-Covariance and Cross-Correlation 

Matrices 


For a stationary vector time series {Z,) with mean vec- 
tor q, let r ( l )  be the lag 1 cross-covariance matrix 

and let p(1) = {pij(l)) be the corresponding cross-corre- 
lation matrix. 

When the vector ARMA model in (3.1) is stationary, 
it is well known that 

where the +j's are obtained from the relationship 

= - I ,  r = max(p, q), and it is understood that (a)if 
P < ~ , Q ~ + I= ' a .  = Q, = 0, and (b) if q < p, 8,+, = ... '= 0, = 0. 

In particular, when p = 0, that is, we have a vector 
MA(q) model, then 

f 

Thus, all auto- and cross-correlations are zero when 1 
> q. On the other hand, for a vector autoregressive model 
the auto- and cross-correlations in general will decay 
gradually to zero as I 1 I increases. 

3.3 	A Determinantai Criterion for ARMA Models 

and the Partial Autoregression Matrices 


From the moment equations in (3.5) for a stationary 
ARMA (p,  q) model, we see that the autocovariance 
matrices I'(1)'s and the autoregressive coefficient mat- 
rices Q, , . . . , Q, are related as follows: 
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where 4. MODEL BUILDING STRATEGY FOR MULTIPLE TIME 

gl(p ,  m) = [r(m + p - 1), . . . , r (m + I)], and 
= [Q,, . . . , Q,- Consider now the k x k matrix 

where dij(l, m) is the determinant 

dij(l, m) = det A(/, m) cj(l, m) Ig1i(15 m) Yij(1 + m) 9 

cj(l, m) is the jth column of c(1, m), gti(l, m) is the ith row 
of gl(l,  m), and yij(l + m) is the (i, j)th element of r(1
+ m). It follows from (3.7) that for an ARMA (p ,  q) 
model 

D ( l , m ) = O  for l > p  and m r q .  (3.9) 

This provides a multivariate generalization of the results 
in Gray, Kelley, and McIntire (1978) for univariate 
ARMA models. 

In the special case m = q = 0, (3.7) is a multivariate 
generalization of the Yule-Walker equations for autore- 
gressive models in univariate time series. Analogous to 
the partial autocorrelation function for the univariate 
case, we may define a partial autoregression matrix func- 
tion y(1) having the property that if the model is AR(p), 
then 

From (3.7), we define ?(I) as 

SERIES 

The models in (3.1) contain a dauntingly large number 
{k2(p + q)  + tk(k + 1)) of parameters, complicating 
methods for model building. It is natural that attempts 
have been made to simplify the general form in the model 
building process, for example by Granger and Newbold 
(1977) and Wallis (1977). While we sympathize with this 
aspiration, we feel that so far at least these attempts have 
not been successful. In some comparisons made later in 
Section 6, we argue that they do not result in genuine 
simplification, nor do they provide feasible methods 
when k is greater than 2 or 3. We see no alternative but 
to provide for direct initial fitting of models of the form 
(3.1). It must, however, be added 

1. that often models of rather low order ( p  and q 
small) provide adequate approximation, 

2. that occasionally knowledge of the system might 
allow simplification a priori, although even here prudent 
checking of the adequacy of the simplifcation would be 
necessary (see Zellner and Palm 1974), 

3, that considerable simplification is almost invaria- 
bly possible after an initial model has been fitted, 

4. that 2 and 3 imply that provision should be made 
to allow models to be fitted in which certain parameters 
are fixed or constrained in some other way, 

5 ,  that other methods of seeking simplifications, for 
example principal component analysis or canonical anal- 
ysis (see Box and Tiao 1977), will often prove effective. 

In brief, we feel that although the full form (3.1) needs 
to be fitted initially, subsequent iterations will usually 
lead to simplification. -

In what follows we sketch an iterative approach con- 
sisting of (a) tentative specification (identification), (b) 
estimation, and (c) diagnostic checking for the vector 
ARMA models in (3.1). A computer package to carry out 
this analysis has been completed (Tiao et al. 1979) con- 
sisting of three main programs: (a) Preliminary Analysis, 
(b) Stepwise Autoregression, and (c) Estimation and 
Forecasting. 

4.1 Tentative Specification 

The aim here is to employ statistics (a) that can be 
readily calculated from the data and (b) that facilitate the 
choice of subclass of models worthy of further examination. 

Sample Cross-Correlations. The sample cross-corre- 
lations cij(l), 

where Zi is the sample mean of the ith component series 
of Z,, are particularly useful in spotting low order vector 
moving average models, since from (3.6) pij(l) = 0 for I 
> 4. 
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For the data shown in Figure 1, which were generated 
from a bivariate MA(1) model, Figures 3(a)-(c) show, 
respectively, the sample autocorrelations bll(l) and 622(l), 
and the sample cross-correlations b12(1). The large values 
occurring at ( 1 ( = 1 would lead to tentative specification 
of the model as an MA(1). However, graphs of this kind 
become increasingly cumbersome as the number of series 
is increased. Furthermore, identification is not easy from 
a listing of sample cross-correlation matrices p(1) like that 
in Table l(a), particularly when k is greater than 4 or 5. 

In this circumstance, we have found the following sim- 
ple device of great practical value. Instead of the nu- 
merical values, a plus sign is used to indicate a value 
greater than 2n - 'I2, aminus sign avalue less than -2n -'I2, 
and a dot to indicate a value inbetween -2n-'I2 and 
2n-'I2. The motivation is that if the series were white 
noise, for large n the bij(l)'s would be normally distributed 
with mean 0 and variance n-'. The symbols can be ar- 
ranged either as in Table l(b) or as in Table l(c). We 
realize that the variances of the bij(l)'s can be consid- 
&ably greater than n-'I2 when the series are highly au- 
tocorrelated, so that these indicator symbols, if taken 
literally, can lead to overparameterization. However, we 
do not interpret these indicator symbols in the sense of 
a formal significance test, but as a rather crude "signal- 
to-noise ratio" guide. Taken together they can give useful 
and assimilable indicators of the general correlation 
pattern. 

Table 2 shows sample cross-correlation matrices in 
terms of these indicator symbols for the series in Figure 
2 generated from an AR(1) model. The persistence of 
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Figure 3. Sample Auto- and Cross-Correlations for 
the Data in Figure 1 

large correlations suggests the possibility of autoregres- 
sive behavior. In general, the pattern of indicator symbols 
for the cross-correlation matrices makes it very easy to 
identify a low order moving average model. 

Sample Partial Autoregression and Related Summary 
Statistics. For an AR(p) process, the partial autoregres- 
sion matrices 9(1) in (3.11) are zero for 1 > p. They are 
therefore particularly useful for identifying an autore- 
gressive model. Estimates of 9(1)  and their standard er- 

Lag 1-6 

Lag 7-12 

Lag 1-6 

Table -1. Cross-Correlations Matrices p (I) for the Data in Figure 1 

(a) Sample cross-correlation matrices b(1) for the data in Figure 1 

-.28 .37 .03 .08 .04 -.03 - . I1  .04 -.02 -.09 
- 2 - 9 0 o ]  - 0 - 8 - 0 .og][-.o2 - .OBI  [:by ::b] 

03 00 .06 .04 
[I::: - 1  [ : : I [ : - 1  [ - - 1  0 8  :08] [-,Ol .Ol] 

( b )  p(1) in term of indicator symbols 

Lag 7-1 2 

Ic) Pattern of correlations for each element in the matrix over all lags 
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Table 2. Sample Cross-Correlation Matrices p(1) for the Data in Figure 2 in Terms of lndicator Symbols 

Lag 1-6 

Lag 7-12 

rors can be obtained by fitting autoregressive models of 
successively high order I = 1, 2, . . . by standard mul- 
tivariate least squares. 

It is well known (see, e.g., Anderson 1971) that for a 
stationary AR(p) model asymptotically the estimates cp' I ,  

. $"a are jointly normally distributed. A useful sum- 
mary of the pattern of the partials is obtained by listing 
indicator symbols, assigning a plus (minus) sign when a 
coefficient in ~ ( 1 )is greater (less) than 2 (-2) times its 
estimated standard errors, and a dot for values in between. 

To help tentatively determine the order of an autore- 
gressive model, we may also employ the likelihood ratio 
statistics corresponding to testing the null hypotheses 
cpl = 0 against the alternative Q, # 0 when an AR(1) model 
is fitted. Let 

Table 3. lndicator Symbols for Partial 

Autoregression and Related Statistics for Data in 


Figure 2 


lndica tor M (1): Diagonal elements of 
Lag I symbols 7 x4 $ 

'; means approximately distributed as 

be the matrix of residual sum of squares and cross prod- 
ucts after fitting an AR(1). The likelihood ratio statistic 
is the ratio of the determinants 

U = IS(/) l I lS (1  - 1) 1 .  (4.2) 

Using Bartlett's (1938) approximation, the statistic 

M(1) = - ( N  - - 1 . k)log,U (4.3) 

is, on the null hypothesis, asymptotically distributed as 
x2  with k2 degrees of freedom, where N = n - p - 1 
is the effective number of observations, assuming that a 
constant term is included in the model. 

Finally, a measure of the extent to which the fit is 
improved as the order is increased is provided by the 
diagonal elements of the residual covariance matrices 

corresponding to the successive AR models. 
For illustration, the matrices of summary symbols, the 

M(1) statistics, and the diagonal elements of the residual 
covariance matrices for the series in Figure 2 are shown 
in Table 3 for 1 = 1,  . . . , 5. They indicate that an AR(1) 
or at most an AR(2) would be adequate for the data. 

For the series shown in Figure 1, the pattern of the 
partials and related statistics are given in Table 4. Notice 
here that if we had confined attention to autoregressive 
models as is advocated in Parzen (1977), we would have 
needed p to be as high as 7. This is not surprising since 
with the MA(1) model of (3.2) written in the autoregres- 
sive form z, = nlz,- + . . . + a,, we find + r r ~ z , - ~  

Thus, although the determinants I n;. I decrease rapidly 
towards zero as j increases, the elements of nj converge 
to zero very slowly so that many autoregressive terms 
would be needed to provide an adequate approximation. 

In general, the pattern of the partial autoregression 
matrices, the M(1) statistic, and the diagonal elements of 
the residual covariance matrix are useful to distinguish 
between moving average and low order autoregressive 
models and to select tentatively the appropriate order for 
the latter. 
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Table 4. Pattern of Partial Autoregression and 
Related Statistics for Data in Figure 1 

Pattern of 

Lag P (1) 


- 4.38 

7 16.5 

+ .94 

- .91 
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Sample Residual Cross-Correlation Matrices After AR 
Fit. After each AR(1) fit, 1 = 1,  . . . ,p, cross-correlation 
matrices of the residuals 9,'s may be readily obtained. 
Table 5 shows indicator symbols for residual correlations 
after fitting AR(1) and AR(2) to the AR data plotted in 
Figure 2. Again a plus sign is used to indicate values 
greater than 2n-Il2, a minus sign for values less than 
-2n - 112, and a dot for in-between values. They verify 
that there is no need to go beyond an AR(2) model. 

It is perhaps worth emphasizing here again that these 
indicator symbols are proposed as a rough preliminary 
device to help arrive at an initial model. They should not 
be treated as "exact significance testing." In a recent 
paper by Li and McLeod (1980), expressions have been 
obtained for the asymptotic distributions of the residual 
autocorrelations. As in the univariate case, the low order 
autocorrelations have variance considerably less than 
.-- 112
r1 . 

For mixed vector autoregressive moving avetage models 
in general, however, both the population cross-correla- 
tion matrices p(1) and the partial autoregression matrices 
y(1) decay only gradually toward 0. In some situations, 
the order of mixed models may be tentatively identified 
by inspection of patterns in residual cross-correlations 
after the AR fit, but in others study of residual correla- 
tions could be misleading. For illustration, consider the 
case of a stationary ARMA(1, 1) model 

( I  - qB)z, = ( I  - OB)a,. (4.5) 

If an AR(1) model is fitted to {z,), then the estimate Q will 
be biased. In fact, asymptotically Q converges in prob- 
ability to 

Thus the residuals 9, = z, - q0z,- ,approximately follow 
the model 

Table 5, Indicator Symbols for Residual Cross Correlations for the AR ( 1 )  Data of Figure 2 

AR (1) Lag 1-6 

Lag 7-12 

AR (2) Lag 1-6 

Lag 7-1 2 



809 Tiao and Box: Modeling Multiple Time Series With Applications 

For k = 1, (8,) follows an ARMA(1, 2) model so that the 
autocorrelations of 8, are 

and p;(l) and p;(2) are functions of cp and 0. Table 6 gives 
values of p;(l) and p;(2) for various combinations of val- 
ues of cp and 0. For each combination, the first value is 
p;(l) and the second ~ ~ ( 2 ) .  

We see that if the true value of cp is large in magnitude, 
residual autocorrelations would lead to the choice of an 
MA(1) model for ci, and therefore the correct identifica- 
tion. For intermediate values of cp, a moving average of 
order 2 or higher might be selected, resulting in 
overparametrization. 

In Gray, Kelley, and McIntire (1978) and Beguin, Gour- 
icroux, and Monfort (1980), methods have been proposed 
to determine the order of univariate ARMA model. These 
methods are essentially equivalent to estimating, for k 
= 1,  the determinant D(1, m) in (3.8) using sample esti- 
mates of the autocovariances and selecting the orders of 
autoregressive and moving average polynomials on the 
basis of the property in (3.9). We are currently studying 
sampling properties of estimates of appropriate functions 
of D(1, m) in the vector case. 

4.2 Estimation 

Once the order of the model in (3.1) has been tenta- 
tively selected, efficient estimates of the associated pa- 
rameter matrices Q = (Q,, . . . , Q,), 0 = (01,. . . , O,), 
and $, are determined by maximizing the likelihood func- 
tion. Approximate standard errors and correlation matrix 
of the estimates of elements of the qj 's and Oj's can also 
be obtained. 

Conditional Likelihood. For the ARMA (p,  q) model, 
we can write 

As in the univariate case discussed in Box and Jenkins 
(1970), the likelihood function can be approximated by 
a "conditional" likelihood function as follows. The series 
is regarded as consisting of the n - p vector observations 

Table 6. Asymptotic Values of pa (1 )  and pa (2) 
\ 

z,, , , . . . , z,. The likelihood function is then determined 
from a,+ ,, . . . , a,, using the preliminary values z, ,  
. . . , z, and conditional on zero values for a,, . . . , 
a,-,-,. Thus, as shown in Wilson (1973), 

l,(cp, 0, $, I z) I $ I- '"-~)/~exp{-4 tr $,-'S(Q, O)), 

where S(Q, 0) = Ix:=,+a,al,. Properties of the maxi- 
mum likelihood estimates obtained from (4.10) have been 
discussed in Nicholls (1976, 1977) and Anderson (1980). 

It has been shown in Hillmer and Tiao (1979) that this 
approximation can be seriously inadequate if n is not 
sufficiently large and one or more zeros of I O,(B) I lie on 
or close to the unit circle. Specifically, this would lead 
to estimates of the moving average parameters with large 
bias. 

Exact Likelihood Function. For univariate ARMA 
models, the exact likelihood function has been considered 
by Tiao and Ali (1971), Newbold (1974), Dent (1977), 
Ansley (1979), and others. For vector models, this func- 
tion has been studied by Osborn (1977) for the pure mov- 
ing average case and by Phadke and Kedem (1978), 
Nicholls and Hall (1979), and Hillmer and Tiao (1979). 
It takes the form 

where lI depends (a) only on z, ,  . . . , z, if q = 0 and 
(b) on all the data vectors z , ,  . . . , z, if q f 0. Estimation 
algorithms have been developed and incorporated in our 
computer package for the vector MA(q) model. For the 
general ARMA(p, q) model, it has been shown that a 
close approximation to the exact likelihood can be ob- 
tained by considering the transformation 

so that (4.12) 

and then applying the results for MA(q) to w,,  t = p + 
1, . . . , n. 

Because estimation of moving average parameters 
using the exact likelihood is rather slow, we presently 
employ the conditional method in the preliminary stages 
of iterative model building and switch to the exact method 
towards the end. 

4.3 Diagnostic Checking 

To guard against model misspecification and to search 
for directions of improvement, a detailed diagnostic anal- 
ysis of the residual series {a,), where 

is performed. Useful diagnostic checks include (a) plots 
of standardized residual series against time and/or other 
variables and (b) cross-correlation matrices of the resid- 
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Table 7. Pattern of Sample Cross-Correlations for the SCC Data 

ZI Stocks 

Zl Stocks + + + + + + + +  . . . .  
. . . . . . . .  


Z2Cars . . . . . . . . . . . .  

. . . . . + + +  

Z3 Commodities 

uals I,. As before, the structures of the correlations are 
summarized by indicator symbols. Overall X2  tests based 
on the sample cross correlations of the residuals have 
been proposed in recent papers by Hosking (1980) and 
Li and McLeod (1980). However, as is noted in Box and 
Jenkins (1970), such overall tests are not substitutes for 
more detailed study of the correlation structure. 

5. ANALYSES OF TWO EXAMPLES 

We now apply the model building approach introduced 
in the preceding section to the following sets of data: 

1. The Financial Time Ordinary Share Index, U.K. 
Car Production and the Financial Time Commodity Price 
Index: Quarterly Data 311952-411967, obtained from 
Coen, Gomme, and Kendall (1969). This will be referred 
to as the SCC data. 

2. The Gas Furnace Data given in Box and Jenkins 
(1970). 

5.1 The SCC Data 

The three series are 

Z,,: Financial Time Ordinary Share Index 
Z2,: U.K. Car Production 
Z3,: Financial Time Commodity Price Index 

The authors of the original study were interested in the 
possibility of predicting Zl,  from lagged values of Z2,and 
Z3, using a standard regression analysis in which Z, ,  was 
treated as a dependent variable and Z2(t-6) and Z3(1-7) 
as regressors or independent variables. For a critical eval- 
uation of this approach, see Box and Newbold (1970). 
Here we consider what structure is revealed by the pres- 
ent multiple time series analysis, in which the three series 
are jointly modeled. 

Tentative Spec$cation. We see in Table 7 that the 
original series show high and persistent auto- and cross- 
correlations. Examination of the partials and related sta- 
tistics in Table 8 shows that for 1 > 2 most of the elements 
of Y(1) are small compared with their estimated standard 
errors and the M(1) statistic fails to show significant im- 
provement. Table 9 shows that the pattern of the cross- 
correlations of the residuals after AR(2) is consonant with 
estimated white noise. However, note that there is one 

Z2 Cars Z3 Commodities 

+ + + + + + + + + + + +  + + + + + + + + + + + +  
+ + + . . . . .  + +  . . . . . .  

large residual correlation at lag 1 after the AR(1) fit, sug- 
gesting also the possibility of an ARMA(1, 1) model. 

Estimation. Both an AR(2) and an ARMA(1, 1) model 
were fitted using the exact likelihood method* but results 
are given only for the ARMA(1, 1) model, which pro- 
duced a marginally better representation. For this model, 

where is a vector of constants, Table 10 shows the 
initial unrestricted fit and also the fits for two simpler 
models obtained by setting to zero those coefficients 
whose estimates were small compared to their standard 
errors. 

Diagnostic Checking. Table 11 suggests that the re- 
stricted ARMA(1, 1) model provides an adequate rep- 
resentation of the data. 

Implication of the Model. The final model implies that 
the system is approximated by 

Upon substituting (5.2a) into (5.2c), we get 

(1 - .83B)Z3t = 2.8 + .40(1 - .98B)Z1(t-1) 

Thus all three series behave approximately as random 
walks with slightly correlated innovations. From the 
point of view of forecasting, (5.2d) is of some interest 
since it implies that ordinary share Z1,,- is a leading 
indicator at lag 1 for the commodity index Z3,. Its effect 
is small, however, as can be seen for example by the 
improvement achieved over the corresponding best fitting 
univariate model, which was 

The residual variance of .15 1 from the univariate model 
is not much larger than the value .I34 for a3, obtained 

* For this example, estimates from the conditional likelihood for the 
ARMA(1, I )  case are very close to the exact results. 



811 Tiao a n d  Box: Model ing Multiple Time Series With Applications 

Table 8. Partial Autoregression and Related 

Statistics: SCC Data 


MIII 
Indicator Symbols statistic Diagonal Elements of 

Lag for Partials 7x g 2  $ x 10 

from the final vector model. Although the multiple time 
series analysis fails to reveal anything very surprising for 
this example, it shows what is there and does not mislead. 

5.2 The Gas Furnace Data 

The two series consist of (a) input gas rate and (b) 
output as C02 concentration at 9-second intervals from 
a gas furnace. We shall let Zlt= gas rate + .057 and Z2( 
= C02 - 5.35. This set of data was employed in Box 
and Jenkins (1970) to illustrate a procedure of identifi- 
cation, fitting, and checking of a transfer function model 
of the form (2 .3 )  for k = 2 relating two time series one 
of which is known to be input for the other. Using this 
approach, the following models were found for the input 
Z1,and the output Zzr; 

Table 9. Pattern of Cross-Correlation Matrices of Residuals: SCC Data 

. . + . . .  . . .  
(a) AR(1) model 

. . .. . .  . . .  . . .  . . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

(b) AR(2) model 
. . .. . .  
. . .- . .  
. . .. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . + 

. . 

. . 

. . 

Table 10. Estimation Results for the Model (5.1): SCC Data (exact likelihood) 

.15 -.06 -.29 
( 54) 

(1) Full Model 
(4.08.82) - .32 - .79[::::I 1g: :;: 1::2 
(1.47) (.la) (.17) (.08) (.28) 

(2) Restricted Model (inter- 
mediate) 

(3) Restricted Model (final) ( "1 I .I3][2.76 -
(1.07) (.06) 623) 

('"! .40 

.23 

:;:A:!]1:::; ]
-(.11) ,013 ,022.44 ,078 ,129 
(.21) (.13) 

] 1:- ],085 

- .41 ,019 .023 ,134 
(.12) 
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Table 11. Pattern of Residual Cross-Correlations 

After Final Restricted ARMA(1,l) Model Fit: SCC 


Data 


11 d2 53 

-dl . . . . . . . . .  . . . . . . . . . .  . . . . . . . . .  


d3 . . . . . . . . . .  -
. . . . . . . . .  . . . . . . . . . .  


where w(B) = -(.53 + .37B + .51B2), 6 (B)  = 1 - .57B, 
q (B)  = 1 - 1.53B + .63B2,and the { a l t )and {a,,) series 
are assumed independent. 

Particularly when we are dealing with econometric 
rather than engineering models, feedback relationships 
may not be known a priori; it is of interest, therefore, to 
analyze the data using the present approach where no 
distinction is made between an input and output variable 
and the fact that no feedback could occur in the system 
is not used. 

Tentative In 1 2 .  we see that the 
auto- and cross-correlations of the original data in part 
(a) are persistently large in magnitude, ruling out low 
order moving average models; the M(1) statistic (xi) in 
part (b) suggests that an AR(6) might be 
priate; and the residual cross correlation pattern after an 
AR(6) fit in part (c) seems to the 
of this model. 

Estimation Results. Estimation results corresponding 
to an unrestricted AR(6) model 

(I - q l B  - "' - q6B6)Zt= at (5.5)  
are as follows: 

81 4 2  

[ I : :  - 0 5 1  [;1.20 l o ]  
(.06) (.05) (.13) (.08) 

1.55 .14 - .59 
(.08) (.06) (.16) ( . 1 1 )  

4 3  44[ ::I]
(.15).17 - 0 8 1  (.15) (.09)(.09) [:;:6 
-.44 -.I7 
(.19) ( . 1 1 )  (.19) ( . 1 1 )  

45 4 6  

- .04 

(.18) ( . lo )  ( . 1 1 )  (.04) 

.0345 1
= - 0 0 2  .0566 ' 6 ( a l , a 2 ) =  .045 (5.6) 

L A 

If we let 

41 = {C$ij")}, 
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Table 12. Tentative Identification for the Gas 

Furnace Data 


(a) Pattern of cross-correlations of the original data 

z l  t Z2t 

z i t  + + + + + + + + + + + +  - - - - - - - - - - - -

(b) M statistic for partial autoregression 


Lag1 1 2 3 4 5 6 7 8 9 1 0 1 1  


M(I) 1650 665 31.7 22.5 5.6 12.9 1.8 8.0 3.5 0 2.0 

(c)  Pattern of cross-correlations of the residuals after AR(6) fit 

11t 32t 

-6: . . . . . . . . . . .  . . . . . . . . . . . .  


d2t . . . . . . . . . . . .  . . . . . . . . . . . .  


we see that C $ 1 2 ( 1 )  are small compared with their standard 
errors over all lags, confirming (as in this case is known 
from the physical nature of the apparatus the 
data) that there is a unidirectional relationship between 
Zit and &, involving no feedback. Also, +21(1)is small for 

= 2,  and the residuals and d2,  are essentially 
uncorrelated, implying a delay of 3 periods. It should be 
noted also that the variances for a l ,and a2,are very close 
to those for a,,  and a2, in (5.4), and their correlation is 
negligible. 

To facilitate comparison with (5.4), we set cpll"' = 0 
for 1 > 3, qI2(l)  = 0 for all I ,  q21'1'= 0 for 1 = 1 ,  2,  and 
q22(1)= 0 for 1 = 5,6. Estimation results for this restricted 
AR(6) model are then 

41 4 2  4 3  

- 1.38 

[ i : :  i 3 ][ ] [ ]0 - .58 -.53 -.I4 
(.06) ( . I l l  (.07) ( . lo)  

44 45 46 

[ . ' I(.16) (.04) [ - ( . I 1 1' 2 1  (.I71 :] [." :] 
$ -- [.0359 -.0029] b(aI ,az) = 0 (5.7).0561 ' 

Examination of the pattern of the cross-correlations of 
the residuals suggests that the model is adequate. 

Implication of the Bivariate Model. The final AR(6) 
model (5.7) can be written 

[ q22 (B)  

where q l l ( B )  = 1 - 1.98B + 1.38B2 - .35B3, cpZl(B) 
= (.53 - .11B - .21B)B3, and cpz2(B)= ( 1  - 1.53B 
+ .58B2 + .14B3 - .12B4). Assuming a l ,  and a2, are 
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uncorrelated, the input model cpll(B)Zlt = air with 
Var(alt) = .0359 is essentially the same as (5.4a). Now 
the model relating the output Z2, to the input Z1, is 

with Var(a2,) = .0561. The noise model cp22-1(B)a2t is 
not very different from the corresponding one cp - '(B)a2, 

813 

is known or how much we are prepared to assume. In 
some applications, particularly in engineering and most 
examples of intervention analysis, an adequate initial 
specification may be possible from knowledge of the na- 
ture of the problem. This may allow a flow diagram show- 
ing the feedback structure to be drawn and likely orders 
to be guessed for the various dynamic components. The 
resulting models can then be directlyfitted in the manner 

at described and illustrated in Box and MacGregor (1974, in (5.4b), but the dynamic model - ( P ~ ~ ( B ) ( P Z Z - ' ( B ) Z ~ ~  
first sight appears markedly different from the first term 
on the right side of (5.4b). The reason is that in the form 
(5.9) the denominators of the dynamic model and of the 
noise model are constrained to be identical. This restric- 
tion is not present in the transfer function model (5.4b). 
The less restrictive form can however be written in the 
form of (5.9) if we set cpz2(B) = cp(B) and -cpzl(B) = 
~ ( B ) B ~ { ~ ( B ) S'(B)). For this example, the factor-

(p(B)K1(B) 1 - .96B, and it is then seen that the 
models are in fact very similar. This may be confirmed 
by comparing the impulse response weights in Table 13, 

1976) and Box and Tiao (1975). For a single input with 
feedback known to be absent, a prewhitening method is 
given in Box and Jenkins (1970) for identifiing an un- 
known dynamic system, but extension of this identifi- 
cation method to multiple inputs is rather complex. 

Particularly for economic and business examples, how- 
ever, the feedback structure and orders of the multiple 
system are often unknown. The present multiple time 
series procedure has the great advantage that it allows 
identiJication of the feedback and dynamic structure. 
Furthermore, 

where w(B)BbS - '(B) = x,?==ovj~jand - ( P ~ ~ ( B ) ( P ~ ~ - ' ( B )1. 
= x j " , o v * j ~ j .  

Further AR Results. It is instruc- 
tive to examine for this data the changes in the fitted 
autoregressive models as the order is increased. Using 
indicator symbols (and omitting the dots) Table 14 shows 
the situation for p = 1, . . . , 6. The residual covariance 
matrix for each order is also given. The following obser- 
vations may be made. 

1. If only AR(1) or AR(2) were considered, one might 
be led to believe mistakenly that there was a feedback 
relationship between these two series. 

2. The unidirectional dynamic relationship becomes 
clear when the order of the model, p ,  is increased to 
three. Since the input series Z I t  essentially follows a 
univariate AR(3) model, this suggests that the present 
procedure will correctly identify the one-sided causal 
dynamic relationship once the input model is appropri- 
ately selected. 

3. The delay b = 3 emerges when the order p is in- 
creased to 4. Since only very marginal improvement in 
the fit occurs for p > 4, this is saying that the delay is 
correctly identified only when the model is specified es- 
sentially correctly. 

Implications on General Time Series Model Building. 
The relative merit of the present procedure and more 
direct modeling of the system will depend on how much 

A one-sided causal relationship, if it exists, will 
emerge in the identification process, and the stochastic 
structures of the input as well as the transfer function 
relationship between input and output will be modeled 
simU1taneously. 

2. Stochastic multiple input and multiple output sit- 
uations are readily handled. 

3. A useful method is provided for seeking leading 
indicators in economic and business applications. In this 
context it should be noted that a unidirectional dynamic 
relationship may not exist between two time series even 
when one variable is known to be the input for the other. 
One reason for this phenomenon is the effect of temporal 
aggregation. As shown in Tiao and Wei (1976), pseudo- 
feedback relationships could occur because of this tem- 
poral aggregation effect, and it would be a mistake to 
impose a transfer function model in such a situation. 

4. However, when a simple transfer function struc- 
ture of the form (2.2) is appropriate, the present multiple 
time series approach could rarely reproduce it directly- 
see, for example, (5.4b) and (5.9)-and some analysis of 
the fitted form might be necessary to reveal a more par- 
simonious and more easily understood structure. 

6. COMPARISON WITH SOME OTHER APPROACHES 
AND CONCLUDING REMARKS 

We have discussed various tools used in an iterative 
approach to modeling multiple time series and illustrated 

Table 13, Impulse Response Weights for the Gas Furnace Data 

I 
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Table 14. Successive AR Fitting Results for the Gas Furnace Data 

Order of AR QI Q2 'f's Q4 Qs Q6 $ 

how they work in practice. Much further work is needed, 
especially in the identification of mixed autoregressive 
moving average models and in developing faster esti- 
mation algorithms and better tools for diagnostic check- 
ing. In spite of the imperfections of the present tools and 
the preliminary nature of the approach, we have felt it 
appropriate to present them here in order to (a) illustrate 
the potential usefulness of vector autoregressive moving 
average models in characterizing dynamic structures in 
the data and (b) stimulate further development of mod- 
eling procedures. Several alternative approaches to mod- 
eling multiple time series have been proposed in the lit- 
erature. It may be of interest to discuss briefly those 
proposed by Granger and Newbold ( 1  977), Wallis ( 1  977), 
and Chan and Wallis (1978). 

In the Granger and Newbold approach, one begins by 
fitting univariate ARMA models to each series, 

and then attempts to identify the dynamic structure of 
the k white noise residual series {Cj , )by examination of 
their cross-correlations. A model of the form (2.2) with 
k(h) being the set ( 1 ,  . . . , k) excluding h is then fitted 
to the k residual series. This model and the prewhitening 
transformations (6.1) then determine the model for the 
original vector series. As the authors themselves pointed 
out, the procedure is complex and difficult to apply for 
k > 2. One major difficulty arises from the fact that the 
parameters in the model for the residuals are subject to 
various complicated nonlinear constraints. Also, it can 
be readily shown that even if the vector series { Z , )follows 
a low order ARMA model (3 .I ) ,  the corresponding model 
for the residual vector { C , ) where C ' ,  = ( C I , ,. . . , C k r )  
can be complex and difficult to identify in practice. 

The Wallis and Chan approach uses the form (6.1)for 
each individual series and the fact that the model (3.1) 

can be written as 

I Q(B) I Z, = H(B)a,, (6 .2)  

where H(B) = A(B)B,(B), A(B) is the adjoint matrix and 
I q P ( B )I the determinant of q P ( B ) .As in the G and N 
approach, an individual model is first constructed for 
each series. From the degrees of the moving average 
polynomials 0,,(B) of these individual models, the degree 
of H(B) is determined. Next, models of the form 

DI(B)Z,= H(B)ar, (6.3) 

where Dl(B)is a diagonal matrix polynomial in B of degree 
I ,  are fitted successively for 1 = r, r - 1, . . . , where r 
is some specified maximum order, to determine an ap- 
propriate value for I. A likelihood ratio test is then per- 
formed to check whether the diagonal elements of Dl(B) 
are identical, that is, of the form (6 .2) .Finally, from the 
fitted H(B)and ( q ( B ) ( or Dl(B),one guesses at the values 
of p and q in (3.1) and then proceeds to estimate the 
parameters in q P ( B )and B,(B). The efficacy of this ap- 
proach is open to question on several grounds. 

1 .  The degree of the polynomial H(B) in (6.2)can be 
higher than the maximum degree of 0,,(B) for the indi- 
vidual series. For example, suppose k = 2,  

and the two elements of a, are independent. Then q l  = 

q2 = 0, but it would be a mistake to infer that H(B) is of 
degree zero. 

2. For vector AR or ARMA models, the represen- 
tation (6.2)is certainly nonparsimonious. Apart from the 
covariance matrix $., for k series the maximum number 
of parameters in the original form (3.1) is k 2 ( p  + q ) ,  
while the maximum number of parameters in the form 
(6.2) is kp + [(k - 1)p + q]k2 ,representing an increase 
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of pk(k - parameters. The increase could be even 
greater if the diagonal form (6.3) is employed. Thus, as- 
suming the degree of H(B) is correctly specified, even for 
k as low as 3 or 4, a very large number of additional 
parameters will have to be estimated merely to identify 
correctly a low order vector AR model, say p = 1 or 2. 

3. Since the correspondence between the degrees of 
the determinantal polynomial I q(B) I and H(B) and the 
values of (p ,  q) is not necessarily one to one, it is not 
clear how one determines p and q in (3.1) from the form 
(6.2). 

4.  The approach is made even more computationally 
burdensome because the authors propose to employ the 
exact likelihood method for moving average parameters 
throughout the processes of model building. Our expe- 
rience, however, suggests that because this method con- 
verges relatively slowly it is better to use it only in the 
final stage of the estimation process. 

The chief distinction between our approach and the 
two alternatives just discussed is that we believe it better 
to tackle the dynamic relationships of the k series in their 
entirety, employing tools such as the estimates of cross- 
correlation matrices and partial autoregression matrices 
to shed light directly on the structure. Simplifications of 
one kind or another will then often follow. At least for 
the tentative specification of the vector autoregressive 
or the vector moving average model, our procedures 
seem far simpler to use in practice and do not require the 
multitude of steps these alternative approaches need to 
arrive at even a simple model. 

To illustrate these points, we briefly consider the mink- 
muskrat example which Chan and Wallis used to illustrate 
their methods. They treat two series YI,* and Yz,* ob-
tained after "detrending" the muskrat and mink series 
by first and second degree polynomials respectively. Pro- 
ceeding through the various steps outlined above, they 
eventually arrive at an AR(1) model. However, it will be 
seen that this same model is suggested immediately by 
the simple procedures we propose. Table 15(a) shows the 
partial autoregression results for 1 = 1, 2 and Table 15(b) 
the residual cross correlations after the AR(1) fit. A verv . , 

of this set of data is given in A n s l e ~and 
~ e w b o l d(1979). For various reasons, we do not wish to 
sanctify this AR(1) model. These include the question of 
whether any linear structural model is adequate for these 
series (see and Lim 1980). the the 
detrending procedures and the suspicious behavior of a 
high autocorrelation at lag 10 occurring in the residuals 
seem suspect. Our only point is to show that the circui- 
tous route adopted by Chan and Wallis to arrive at this 
model is unnecessary. 

Before concluding this paper, it is worth noting that in 
modeling as well as analysis of vector time series one 
often finds it useful to perform various eigenvalue and 
eigenvector analyses. Specifically, writing (3.1) in the 
form 

zt = ?,-,(l) + a,, (6.4) 

Table 15. Identification of Muskrat-Mink Data 

(a) Partial Autoregression and Related Statistics 

Diagonal elements of 
Lag 	 Partials MU) 7~4~ $ 


1 + - 111.7 .062 

+ + 	 ,059 

2 - 4.8 	 ,0571 

,0572 


(b) Cross-correlations of Residuals After AR(1) Fit 

a1 	 a2 

where 2,- , (I)  is the one step ahead forecast of z, made 
at time t - 1, and denoting, for stationary series, 

r,(o) = E(Z,Z~,) 

and 

it will often be informative to compute eigenvalues and 
eigenvectors of estimates of the following matrices: 

Such analyses are described in Quenouille (1957), Box 
and Tiao (1977), and Tiao et al. (1979). Also, the eigen- 
values and eigenvectors of the spectral density matrix of 
the model should also be considered (see Brillinger 1975). 
These techniques are useful in (a) detecting exact con- 
current or lagged linear relations between series, and (b) 
facilitating understanding and interpretation of the fitted 
model. In our opinion, this is one of the most important 
and challenging topics for further research. 

[Received Yanuary 1981. Revised June 1981. I  
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